Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 18(2): 280-283, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900403

RESUMO

Prenatal programming during pregnancy sets physiological outcomes in the offspring by integrating external or internal stimuli. Accordingly, pregnancy is an important stage of physiological adaptations to the environment where the fetus becomes exposed and adapted to the maternal milieu. Maternal exposure to high-energy dense diets can affect motivated behavior in the offspring leading to addiction and impaired sociability. A high-energy dense exposure also increases the pro-inflammatory cytokines profile in plasma and brain and favors microglia activation in the offspring. While still under investigation, prenatal exposure to high-energy dense diets promotes structural abnormalities in selective brain regions regulating motivation and social behavior in the offspring. The current review addresses the role of energy-dense foods programming central and peripheral inflammatory profiles during embryonic development and its effect on motivated behavior in the offspring. We provide preclinical and clinical evidence that supports the contribution of prenatal programming in shaping immune profiles that favor structural and brain circuit disruption leading to aberrant motivated behaviors after birth. We hope this minireview encourages future research on novel insights into the mechanisms underlying maternal programming of motivated behavior by central immune networks.

2.
Neuroreport ; 33(12): 495-503, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35776941

RESUMO

OBJECTIVE: This study aimed to characterize the molecular immune networks and microglia reactivity in the nucleus accumbens (NAc) shell affected by fetal nutritional programming leading to addiction-like behavior in the offspring of Wistar rats. Fetal nutritional programming by energy-dense foods leads to addiction-like behavior in the offspring. Exposure to energy-dense foods also activates systemic and central inflammation in the offspring. METHODS: Females Wistar rats were exposed to cafeteria (CAF) diet or control diet for 9 weeks (prepregnancy, pregnancy and lactation), and male offspring at 2 months of age were diagnosed with food addiction-like behavior using operant conditioning. Global microarray analysis, RTqPCR, proinflammatory plasma profile and microglia immunostaining were performed in the NAc shell of male rats. SIM-A9 microglia cells were stimulated with IFN-α and palmitic acid, and microglia activation and phagocytosis were determined by RTqPCR and incubation of green-fluorescent latex beads, respectively. RESULTS: Microarray analysis in the NAc shell of the male offspring exposed to CAF during development and diagnosed with addiction-like behavior showed increasing in the type I interferon-inducible gene, Ift1 , gene network. Genomic and cellular characterization also confirmed microglia hyperreactivity and upregulation of the Ifit1 in the NAc shell of animals with addiction-like behavior. In-vitro models demonstrated that microglia do respond to IFN-α promoting a time-dependent genomic expression of Ift1, IL-1ß and IL-6 followed by increased phagocytosis. CONCLUSION: Prenatal exposure to energy-dense foods primes the IFN type I signaling and microglia complexity in the NAc shell of rats diagnosed with food addiction-like behavior.


Assuntos
Dependência de Alimentos , Interferon Tipo I , Gravidez , Feminino , Ratos , Animais , Masculino , Núcleo Accumbens/metabolismo , Microglia/metabolismo , Ratos Wistar , Dependência de Alimentos/metabolismo , Interferon Tipo I/metabolismo , Dieta
3.
Neurochem Res ; 47(10): 3093-3103, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35767136

RESUMO

Maternal nutritional programming by energy-dense foods leads to the transgenerational heritance of addiction-like behavior. Exposure to energy-dense foods also activates systemic and central inflammation in the offspring. This study aimed to characterize pro- and anti-inflammatory cytokine profiles in blood and their correlation to the transgenerational heritance of the addiction-like behavior in rats. F1 offspring of male Wistar diagnosed with addiction-like behavior were mated with virgin females to generate the F2 and the F3 offspring, respectively. Diagnosis of addiction-like behavior was performed by the operant training schedule (FR1, FR5 and PR) and pro- and anti-inflammatory cytokine profiles in blood were measured by multiplex platform. Multiple linear models between behavior, fetal programming by diet and pro- and anti-inflammatory cytokine profiles were performed. We found that the addiction-like behavior found in the F1 male offspring exposed to energy-dense food (cafeteria, CAF) diet during fetal programing is transgenerational inherited to the F2 and F3 generations. Blood from addiction-like behavior subjects of F2 and F3 generations exposed to CAF diet during maternal programming showed decrease in the anti-inflammatory IL-10 in the plasma. Conversely, decreased levels of the pro-inflammatory MCP-1 was identified in non-addiction-like subjects. No changes were found in plasmatic TNF-α levels in the F2 and F3 offspring of non-addiction-like and addiction-like subjects. Finally, biological modeling between IL-10 or MCP-1 plasma levels and prenatal diet exposure on operant training responses confirmed an association of decreased IL-10 levels on addiction-like behavior in the F2 and F3 generations. Globally, we identified decreased anti-inflammatory IL-10 cytokine in the blood of F2 and F3 offspring subjects diagnosed with addiction-like behavior for food rewards.


Assuntos
Dependência de Alimentos , Efeitos Tardios da Exposição Pré-Natal , Animais , Anti-Inflamatórios , Condicionamento Operante , Feminino , Humanos , Interleucina-10 , Masculino , Gravidez , Ratos , Ratos Wistar
4.
Mol Neurobiol ; 59(2): 932-949, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34797523

RESUMO

Autism spectrum disorder (ASD) is a disease characterized by reduced social interaction and stereotypic behaviors and related to macroscopic volumetric changes in cerebellar and somatosensory cortices (SPP). Epidemiological and preclinical models have confirmed that a proinflammatory profile during fetal development increases ASD susceptibility after birth. Here, we aimed to globally identify the effect of maternal exposure to high-energy dense diets, which we refer to as cafeteria diet (CAF) on peripheral and central proinflammatory profiles, microglia reactivity, and volumetric brain changes related to assisting defective social interaction in the mice offspring. We found a sex-dependent effect of maternal exposure to CAF diet or inoculation of the dsARN mimetic Poly (I:C) on peripheral proinflammatory and social interaction in the offspring. Notably, maternal exposure to CAF diet impairs social interaction and favors an increase in anxiety in male but not female offspring. Also, CAF diet exposure or Poly (I:C) inoculation during fetal programming promote peripheral proinflammatory profile in the ASD-diagnosed male but not in females. Selectively, we found a robust accumulation of the monocyte chemoattractant protein-1 (MCP-1) in plasma of ASD-diagnosed males exposed to CAF during fetal development. Biological assessment of MCP-1 signaling in brain confirms that systemic injection of MCP-1-neutralizing antibody reestablished social interaction and blocked anxiety, accompanied by a reduction in cerebellar lobule X (CbX) volume and an increase volume of the primary somatosensory (SSP) cortex in male offspring. These data highlight the contribution of diet-dependent MCP-1 signaling on volumetric brain changes and microglia morphology promoting ASD-like behavior in male mice.


Assuntos
Transtorno do Espectro Autista , Quimiocina CCL2 , Efeitos Tardios da Exposição Pré-Natal , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Quimiocina CCL2/metabolismo , Feminino , Masculino , Camundongos , Microglia/citologia , Gravidez , Comportamento Social
5.
Artigo em Inglês | MEDLINE | ID: mdl-33497752

RESUMO

According with clinical data, women evolve differently from drug use to drug abuse. Among drugs of abuse, cocaine is the most consumed psychostimulant. Animal studies demonstrated that females show increased motivation to seek cocaine during the self-administration paradigm (SA) than males. Moreover, suffering childhood adversity or major depressive disorder are two factors that could increase the predisposition to suffer cocaine addiction. Maternal separation with early weaning (MSEW) is an animal model that allows examining the impact of early-life stress on cocaine abuse. In this study, we aimed to explore changes in MSEW-induced cocaine-seeking motivation to determine potential associations between despair-like behaviour and cocaine-seeking. We also evaluated possible alterations in the AMPA receptors (AMPArs) composition in the medial prefrontal cortex (mPFC) of these mice. We exposed mice to MSEW and the behavioural tests were performed during adulthood. Moreover, GluA1, GluA2 mRNA and protein expression were evaluated in the mPFC. Results show higher cocaine-seeking in standard nest females, as well as an increase in GluA1 and GluA2 protein expression. Moreover, MSEW induces downregulation of Gria2 and increases the Gria1/Gria2 ratio, only in male mice. In conclusion, female mice show different composition of the AMPA receptor in the mPFC and MSEW alters the glutamatergic system in the mPFC of male mice.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Privação Materna , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de AMPA/metabolismo , Animais , Inibidores da Captação de Dopamina/farmacologia , Feminino , Masculino , Camundongos , Córtex Pré-Frontal/metabolismo , Fatores Sexuais
6.
Front Neurosci ; 14: 452, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581665

RESUMO

Fetal programming by hypercaloric intake leads to food addiction-like behavior and brain pro-inflammatory gene expression in offspring. The role of methylome modulation during programming on central immune activation and addiction-like behavior has not been characterized. We employed a nutritional programming model exposing female Wistar rats to chow diet, cafeteria (CAF), or CAF-methyl donor's diet from pre-pregnancy to weaning. Addiction-like behavior in offspring was characterized by the operant training response using Skinner boxes. Food intake in offspring was determined after fasting-refeeding schedule and subcutaneous injection of ghrelin. Genome-wide DNA methylation in the nucleus accumbens (NAc) shell was performed by fluorescence polarization, and brain immune activation was evaluated using real-time PCR for pro-inflammatory cytokines (IL-1ß, TNF-1α, and IL-6). Molecular effects of methyl modulators [S-adenosylmethionine (SAM) or 5-azatidine (5-AZA)] on pro-inflammatory cytokine expression and phagocytosis were identified in the cultures of immortalized SIM-A9 microglia cells following palmitic acid (100 µM) or LPS (100 nM) stimulation for 6 or 24 h. Our results show that fetal programming by CAF exposure increases the number of offspring subjects and reinforcers under the operant training response schedule, which correlates with an increase in the NAc shell global methylation. Notably, methyl donor's diet selectively decreases lever-pressing responses for reinforcers and unexpectedly decreases the NAc shell global methylation. Also, programmed offspring by CAF diet shows a selective IL-6 gene expression in the NAc shell, which is reverted to control values by methyl diet exposure. In vitro analysis identified that LPS and palmitic acid activate IL-1ß, TNF-1α, and IL-6 gene expression, which is repressed by the methyl donor SAM. Finally, methylation actively represses phagocytosis activity of SIM-A9 microglia cells induced by LPS and palmitic acid stimulation. Our in vivo and in vitro data suggest that fetal programming by methyl donors actively decreases addiction-like behavior to palatable food in the offspring, which correlates with a decrease in NAc shell methylome, expression of pro-inflammatory cytokine genes, and activity of phagocytic microglia. These results support the role of fetal programming in brain methylome on immune activation and food addiction-like behavior in the offspring.

7.
Front Neurosci ; 14: 13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116490

RESUMO

Maternal overnutrition modulates body weight, development of metabolic failure and, potentially, neurodegenerative susceptibility in the offspring. Overnutrition sets a chronic pro-inflammatory profile that integrates peripheral and central immune activation nodes, damaging neuronal physiology and survival. Innate immune cells exposed to hypercaloric diets might experience trained immunity. Here, we address the role of maternal overnutrition as a trigger for central and peripheral immune training and its contribution to neurodegeneration and the molecular nodes implicated in the Nod-like receptor protein 3 (NLRP3) inflammasome pathway leading to immune training. We propose that maternal overnutrition leads to peripheral or central immune training that favor neurodegenerative susceptibility in the offspring.

8.
Nutrients ; 11(6)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159189

RESUMO

Maternal overnutrition during pregnancy leads to metabolic alterations, including obesity, hyperphagia, and inflammation in the offspring. Nutritional priming of central inflammation and its role in ghrelin sensitivity during fed and fasted states have not been analyzed. The current study aims to identify the effect of maternal programming on microglia activation and ghrelin-induced activation of hypothalamic neurons leading to food intake response. We employed a nutritional programming model exposing female Wistar rats to a cafeteria diet (CAF) from pre-pregnancy to weaning. Food intake in male offspring was determined daily after fasting and subcutaneous injection of ghrelin. Hypothalamic ghrelin sensitivity and microglia activation was evaluated using immunodetection for Iba-1 and c-Fos markers, and Western blot for TBK1 signaling. Release of TNF-alpha, IL-6, and IL-1ß after stimulation with palmitic, oleic, linoleic acid, or C6 ceramide in primary microglia culture were quantified using ELISA. We found that programmed offspring by CAF diet exhibits overfeeding after fasting and peripheral ghrelin administration, which correlates with an increase in the hypothalamic Iba-1 microglia marker and c-Fos cell activation. Additionally, in contrast to oleic, linoleic, or C6 ceramide stimulation in primary microglia culture, stimulation with palmitic acid for 24 h promotes TNF-alpha, IL-6, and IL-1ß release and TBK1 activation. Notably, intracerebroventricular (i.c.v.) palmitic acid or LPS inoculation for five days promotes daily increase in food intake and food consumption after ghrelin administration. Finally, we found that i.c.v. palmitic acid substantially activates hypothalamic Iba-1 microglia marker and c-Fos. Together, our results suggest that maternal nutritional programing primes ghrelin sensitivity and microglia activation, which potentially might mirror hypothalamic administration of the saturated palmitic acid.


Assuntos
Grelina/farmacologia , Fenômenos Fisiológicos da Nutrição Materna , Microglia/fisiologia , Hipernutrição , Transdução de Sinais/efeitos dos fármacos , Animais , Glicemia , Ingestão de Alimentos , Feminino , Grelina/metabolismo , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Resistência à Insulina , Masculino , Neurônios/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
9.
Biomed Res Int ; 2018: 8061389, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30027100

RESUMO

Obesity or maternal overnutrition during pregnancy and lactation might have long-term consequences in offspring health. Fetal programming is characterized by adaptive responses to specific environmental conditions during early life stages. Programming alters gene expression through epigenetic modifications leading to a transgenerational effect of behavioral phenotypes in the offspring. Maternal intake of hypercaloric diets during fetal development programs aberrant behaviors resembling addiction in offspring. Programming by hypercaloric surplus sets a gene expression pattern modulating axonal pruning, synaptic signaling, and synaptic plasticity in selective regions of the reward system. Likewise, fetal programming can promote an inflammatory phenotype in peripheral and central sites through different cell types such as microglia and T and B cells, which contribute to disrupted energy sensing and behavioral pathways. The molecular mechanism that regulates the central and peripheral immune cross-talk during fetal programming and its relevance on offspring's addictive behavior susceptibility is still unclear. Here, we review the most relevant scientific reports about the impact of hypercaloric nutritional fetal programming on central and peripheral inflammation and its effects on addictive behavior of the offspring.


Assuntos
Comportamento Aditivo , Fenômenos Fisiológicos da Nutrição Materna , Hipernutrição , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Desenvolvimento Fetal , Inflamação , Obesidade , Gravidez
10.
Behav Brain Res ; 330: 46-55, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28487223

RESUMO

Contextual food conditioned behaviors require plasticity of glutamatergic neurotransmission in the reward system, involving changes in the expression of including a-amino-3-hydroxy-5-methylisoxazole 4-propionate receptors (AMPA), N-methyl-d-aspartic acid (NMDA) and metabotropic glutamate 2,3 (mGlur 2,3). However, the role of changes in glutamatergic synaptic markers on energy-dense palatable food preference during development has not been described. Here, we determine the effect of nutritional programing during gestation on fat food choices using a conditioned place preference (CPP) test and an operant training response and its effect on glutamatergic markers in the nucleus accumbens (Nac) shell and prefrontal cortex (PFC). Our data showed that rats displayed preference for palatable fat food and an increase in caloric intake when compared to a chow diet. Notably, 74% of rats showing a preference for fat food intake correlate with a positive HFD-paired score whereas 26% failed to get HFD-conditioned. Also, male rats trained under an operant training response schedule (FR1, FR5 and PR) showed high and low responder groups to work for food. Notably, hypercaloric nutritional programing of female rats leads to exacerbation for reinforcers in female offspring compared to offspring from chow diet. Finally, we found that an operant training response to palatable reinforcers correlates with upregulation of mGlur 2,3 in the NAc shell and PFC of male rats and female offspring. Also, we found selective Nr1 upregulation in NAc shell and the PFC of female offspring. Our data suggest that nutritional programing by hypercaloric intake leads to incentive motivation to work for food and synaptic plasticity alteration in the mesolimbic system.


Assuntos
Preferências Alimentares/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Comportamento Aditivo/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Condicionamento Operante/efeitos dos fármacos , Dieta , Dieta Hiperlipídica , Ingestão de Alimentos/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Alimentos , Preferências Alimentares/efeitos dos fármacos , Masculino , Motivação , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/dietoterapia , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/fisiologia , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...